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T H E R M O E L A S T I C  C O N T A C T  OF T W O  C Y L I N D E R S  

W I T H  N O N S T A T I O N A R Y  F R I C T I O N A L  H E A T  F O R M A T I O N  

D. V. Grilitskii  and P. P. Krasnyuk UDC 539.3 

The thermoelastic problem of the frictional interaction of two circular infinite cylinders with allowance 
for heat formation due to the action of time-dependent frictional forces changing along the general axis of the 
tribosystem is studied in an axisymmetric formulation. 

1. Fo rmula t ion  of t he  P r o b l e m .  We consider a tribosystem consisting of two circular hollow infinite 
cylinders inserted without clearance into one another (the axial section of the tribosystem is shown in Fig. 
1). A circular cylinder with inside radius al and outside radius a0 is inserted into another cylinder of the 
same shape having inside radius a0 and outside radius a2. Radial stresses ql and q2 depending on the axial 
coordinate and time are specified on the lateral surfaces of the two-layer packet. 

We assume that one of the cylinders rotates about the other with time-varying angular velocity w. 
Heat generation is caused by the action of frictional forces which occur at the contact surfaces of the cylinders 
and obey the Amonton law. The heat contact of the elements of the tribosystem is not ideal. Heat exchange 
according to the Newton law proceeds between the non-contacting surfaces of the packet and the ambient 
medium. Dynamic effects that can occur under the action of external load are ignored. We determine the 
temperature fields, heat fluxes, displacements, and stresses in the two-layer cylinder. 

We relate this tribosystem to cylindrical coordinates by choosing a certain section as a zero section 
and directing the z axis along the cylinder axis. We assume that the behavior of the external load at infinity 
is such that one can use the Fourier integral transform with respect to the z coordinate. Since the external 
load does not depend on the angular coordinate 0, we study this problem in an axisymmetric formulation to 
determine the temperature fields, heat fluxes, thermoelastic stresses, and displacements. 

With the above assumptions, the problem reduces to construction of solutions of the system containing 
the differential heat-conduction equations 

O~T i + r - lO,  Ti + 02~Ti = k710,Ti; (1.1) 

the equilibrium equations 

O,a! i) + r-l(cr! j) - a S  i)) + azr(Jz ) = O, Orr(~ ) + r-'l:(~) + O,a 0") = 0; (1.2) 

the compatibihty equations 

o . 4 "  = 0, 

and the relations of Hooke's law 

Ejr i) = a! i) - vi(a~ j) + ai  D) + E i a j T  j, 

which are subject to the initial conditions 

r~2AJ) 0re!i) - ~(~). ~'zr "4" = O z t r z  , 

Ej i j) = + j)) + Ej.jTj, 

' r  (i) = 2), Ej~/({ ) = 2(1 + vj) rz (J 1, 

(1.3) 

(1.4) 

T,( , - ,z ,O) = O, (1.5) 
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and the boundary and contact  conditions 

r = el: OrTl = "ylT1, a! 1) = - q l ( z , r ) ,  r(1)rz = 0; (1.6) 

r = a 2 : O f T 2  = -72T2, ~r! 2) = -q2(z , r ) ,  r (2) = 0; (1.7) 

r = ao: AlOrT1 - A2OrT2 = fw(r)aop(z,  r) ,  A10rT1 + A2OrT2 + h(T1 - T2) = 0, (1.8) 
= = - v ( z , T ) ,  4 2  = ) = 0,  u ! ' )  = 

Here r and z are radial and axial coordinates, r is time; p(z, v) is the contact pressure; w(r)  is the relative 

angular velocity; Tj is the temperature;  a (j), a~ j), and cr (j) are the radial, tangential,  and axial normal stresses; 

T(~ ) is the tangential stress; e (i), e~ j), and e (i) are the radial, tangential,  and axial linear strains; 7({ ) is the 

shear strain; u (j) is the radial displacement;  Ej is the Young's modulus; vj, Aj, kj, and clj are the Poisson's 
ratio, the heat conductivity,  the  thermal  diffusivity, and the linear heat-expansion coefficient, respectively; 
"U = &J/~J; ~j is the heat-exchange coefficient; h is the heat conductivity of the contact  surface; and f is 
the coefficient of friction. Here and below, j = 1 corresponds to the inner cylinder, and j = 2 to the external 
cylinder. 

2. C o n s t r u c t i o n  of  S o l u t i o n .  From the formulation of the problem it follows that  the behavior of 
the solution depends on the  distr ibut ion of the external load. We assume that  the external load is distributed 
symmetrically about the  section z = 0. Then,  the solution of the formulated problem will also be symmetrical 
about the zero section. Then,  we obtain additional symmetry  conditions [OzTj(r, O, v) = 0] and can use the 
Fourier integral cosine t ransform to solve the problem. 

We reduce problem (1.1)-(1.8) to a system of two integral equations for the functions 

f i ( z ,  v) = ( -1 ) J - l  OrTi(ao, z, v), (2.1) 

which are proportional  to the heat fluxes on the contact surface. To this end, we express the temperature  of 
the cylinders in terms of the functions f j  by first solving Eq. (1.1) subject to the initial conditions (1.5) and 
the thermal boundary conditions (1.6), (1.7), and (2.1). Taking the Fourier integral cosine transform [1] with 
respect to the axial z coordinate,  

is(,, ~, r)  = ] Tj(r, z, T) cos(~z) dz 
0 

and using the Duhamel  theorem [1] with respect to t ime r,  for the transformant of the temperature  T1 we 
obtain the integral representat ion 

?- 

= o,/]j(~,y):~j(r,~,~ - y)dy, (2.2) 
0 

where fi(~, r)  is the Fourier t ransformant  of the function f i ( z ,  r). The kernel of the integral representation is 
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found by solution of the additional problem 

02r  + ,'-~Or4', - ~2:#j = k.f~o,.4,i, 4,j(,-,~,o) = o, 
(2.3) 

O,r  = +1, & r  = + ~ j c j ( ~ j , ~ , ~ ) .  

Here and below, in 4- and :~ the upper sign corresponds to j = 1 and the lower sign to j = 2. 
The desired function f~j(r, ~, r) is written as the sum of two functions: 

oj(~, ~, ~) = cj~(~, ~) + r ~, ~). (2.4) 

The first term is a solution of the stationary heat-conduction equation and satisfies the inhomogeneous 
boundary conditions of problem (2.3): 

0~r + : ~ & , i , j ~  - ~2q, j~ = o, &r  = 4-1, &r = + ' r j~ ' j~(a j ,~) .  (2.5) 

The second term is a solution of the following boundary-value problem: 
2(~ (~2 j2 + r - lOr4j2  -- ~2(~j2 ----" k71c~rr (~J2(r '~'0) = --C~Jl(r'~)' (2 .6 )  

&r = 0, & r  = 4-'r~r 

Thus, we obtained a Bessel differential equation for the functions r Satisfying the boundary 
conditions, we have 

Cjl(r ,  ~) = 4-s r Io(~r)[~Kl(~aj) 4- 7jK0(~aj)] + Ko(~r)[~Ii(~aj) ~ "rjl0(~aj)] (2.7) 
Ii(~ao)[~K~(~aj) 4-"~K0(4a~)] - Kl(~ao)[~l~(~aj) :F 7jIo(~aj)]' 

where Iv(z) and Ku(z) are modified Bessel functions of order v of the first and second kinds [2]. 
To solve problem (2.6), we take the Hankel finite integral transform [1] with respect to the radial 

coordinate r: 
tto 

*r162 ~, r) = + J r}ja(r,  f,, r)K~(r,/~j,,,,) dr. 
aj 

Here 

K i ( , , , j , ~ )  = Wo(,j ,~,,Uj,=ao)Nf,~= (m  = 1,2,...) (2.8) 

is the orthonormalized kernel determined from the solution of the Sturm-Liouville problem: ~ K j  + 
r - l & K j  + I*~Kj = O, where arKj = 0 for r = a0 and OrKj = +TjKj for r = aj, Izj,,n are roots of 
the characteristic equations l, jWff lz jaj ,  l~jao)+ 71Wo(lajaj, laiao) = 0; Ni,ra is a normalizing factor; and 
N~,,n = +0.5[a2oW2o(l~j,mao, # j ,ma0) -  a~[WoZ(#j,,,taj, Izj,,,~ao) + W~(/zj,,,~aj, I~j,mao)]]. In the previous relations, 
we introduced the functions 

W0(x,y) = Jo(z)Yl(y) - Yo(z)J,(v), WI(z,V) = J1(:r.)Y1(y) - YI(z)J~(v), 

where J~,(z) and Y~(z) are Bessel functions of order v of the first and second kinds [2]. 
Applying the integral transform to problem (2.6) and solving the resulting first-order ordinary 

differential equation, we obtain a formula for determining the Hankel transformant of the function ~j2(r, ~, r): 

~j2(t.tj,m, ~, "r) = -~j l (#j , ,n ,  ~) exp [-kj(~ 2 + #~,m)'r]. (2.9) 

Here 

2 - 1  C~jl(#j,m, ~) = aoWo(llj,mao, #j,mao)((~ 2 + #j,m)Nj,,n) (2.10) 

is the HankeI transformant of the function ~j l ( r ,~) .  Inversion of the Hankel transformant is performed by 
the formula 

oo 
Cj2(r, r r)  = ~ ~j2(#j,,~, r *)Kj(r,/~s 

m = l  
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gJ)(~0,~, ~) = 

where 

Using relations (2.8)-(2.10), we write the solution of problem (2.6) in the form 
oo 

~j2(r, ~, ~) : -ao E Wo(m,mr, m,mao)Wo(m,mao, m,r.ao) 2 9 2 /z~,m) exp [-kj(~ 2 + #j,m)w]. (2.11) 

Thus, formulas (2.2), (2.4), (2.7), and (2.11) give the Fourier transformants of the temperature ot 
each of the cylinders. For ~ = 0, these formulas remain valid, if one takes into account that ~/l(r ,  0) = 
+~0 ln(~/~j) + ~0[~j-yj] -~ 

The thermoelastic problem (1.2)-(1.4) under stresses specified on the boundary [boundary conditions 
(1.6)-(1.8)] is solved by the method described in [3, 4]. For each cylinder we introduce the stress function 
T,/(r, z, r), and the problem reduces to the inhomogeneous biharmonic equation 

4 DD~i  + 2DO2~oj + Oz~ j = Fj(r, z, r) (2.12) 

subject to the homogeneous boundary conditions 

D~j = O, Or~i = r- l (1  - ui)~j, r = ao, aj. (2.13) 

In relations (2.12) and (2.13), D is the differential operator rOrr-lOr: 

2 ( r 2 )[ Ejo~j ZJ~ a[O r)dp] Fj(r, z, T) : aj a2 + ~ 02qj(z, r) + OrTj(aj, z, v) + pTj(p, z, 2-- 2 l : ' u j  l +u j  aj a2 , r j  a o -- aj 

a 2 / a 2 r 2 Ejotj Ejotj r + o I J ~ -~ ) [02p(Z, 7 ") + OrTj(ao, z,7")] lr /pTj(p,z, 7")dp. 
i : ~  ,0 1 a 0 -- aj \1  -- uj ~ ao 

Radial displacements are given by the formula 

l-u~ _ar qj(z , r )a2  y a 2 r2 \ p ~ , . ~  a2 r2 EjaJ2 ( a 2 + r 2 

ao E i a i  , 
X f pTj(p,z, 7)dp /pTj(p,z,.r)dp_O2~oj(r,z,T) ] Vj(1 "~ tlj)r_lD~oj(r,z,T)" (2.14) 

"i ~ Ej aO 

Applying the Fourier integral cosine transform to Eq. (2.12) and boundary conditions (2.13), for the 
transformant ~/(r,  ~, r)  we obtain a fourth-order inhomogeneous differential equation. The solution of this 
equation is found as the sum of the generM solution of the homogeneous equation and the partial solution 
of the inhomogeneous equation. The general solution of the homogeneous equation is represented by a linear 
combination of zero- and first-order modified Bessel functions of the first and second kind. To determine 
the four unknown coefficients of the general solution, we use the boundary conditions. Satisfaction of these 
conditions leads to a system of four linear algebraic equations. Solving the system, we find a formula for the 
transformant of the stress function ~j(r ,  ~, r) for each cylinder. Having the formula of the transformant of the 
stress function, we can write formulas for the transformant of the displacements, strains, and stresses. 

Here we write only the expression for the transformant of radial displacements on the contact surface 
of the cylinders: 

2 r 
l-UJEj ( aOfi(~'~')Al(aj'~)/k(aj, ~) ajclj(~'r)/k2(aj'~--)'~A(aj,~) J + Or f fj(~,y)filj(~, v -- y)dy,  (2.15) 

o 

Hj(r = Hj,(r + H,2(r ~); 

otj(1-M2)r~2(aj~S~ ) ~r~jl(aj,~)::~: (/~l(aj,~_) I -,,.;,; 
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~.Vo(~.i,mao, lZl,mao) [ ( A l ( a l ,  C) 
/:/,2(~,r) = ~ ( 1  + v,)ao ~_~ ~ 2 2 2 ~2 m=l Njlrn(~ q- I"tj,m) \ A(ai,~) a~176176 I'Zj'rnao) 

A2(aJ'~)ajW~176 ~) A(aj, ~) #,,m W1 (#j,ma.i,#,,mao)]exp[-kj(~ 2 + #j.m)r],'2 . 

A(aj,r  = 4(I -- vj) + a2~ 2 + ao~ 2 + (2(1 -- z,j) + a2~2)(2(1 -- t/j) + a2~2)[ll(aj~)Kl(ao~ ) 

-I i(ao~)Kl(aj~)] 2 - aff~2(2(l - vj) + a2~2)[Io(aj~)gl(ao~) + Ii(ao~)go(aj~)] 2 

-a2~2(2(1 - t/i)+a2~2)[Ii(al~)Ko(ao~)+ Io(ao~)gl (aj~)] 2 + a2a~4[Io(a.i~)go(ao~) - Io(ao~)IVo(a)~)]2; 

AI(aj ,  ~) = 2[1 -4-(2(1 -- "5)+  a2~2)[t'(aJ~) K'  (ao~) -- Ii(ao~)I(x(aj~)] 2 

-a~2[Io(aj~)Kl(ao~) + II(ao~)go(aj~)]2]; 

A2(aj, ~) = 2ao~[ll(aj~)Ko(ao~) + lo(ao~)K~(aj~)] - 2a)~[Io(aj~)K~(ao~) + I~(ao~)Ko(aj~)]; 
A3(aj, ~) = 2[(2(1 - t,j) +a2~ 2)[I~(aJ~)K~(a0~)- I~(a0~)K~(aj~)l-ala0~ 2[Io(ar I0(ao~)K0(a,~)]]. 

Using the condition of equality of radial displacements on the contact surface and relations (2.15), we 
obtain integral representations for the transformant of the contact pressure: 

2 

In this case, 

Here 

r 

o 

2 
x [ao ~'-~(-1) ~:-11- z/~= Al(ak'~)l-X 

k:l "E; A(ak' ~) j " 

2 
:(0, ~-) = [ ~'~ (_ 1)k-'  (ql:(O' I") ~ 

\ Ek '- k=l 

1" 

- -  , ~ m -  2 
a ~  - -  a k  o 

,. 2 i "a2-l-a~ - 1  
1)k-I 0 _ 

Lk= 1 k 0 - -  a ~  

(2.16) 

[-ljl(O)=otjao(::I: 2--2a~ in (~jo.) 4. (0.5 :F a j T j ) )  . 1  , 
a o - -  a i 

Hi2(0, "r) = - 2a'iaja~ ~ W1(l~j,maj, lJi,mao)Wo(~j,rnao, ~./,m.ao) 
2 3 a2o - a~ ,,,=1 NJ,,n/~i,,,, exp [-ki/~2"nrl" 

Applying the Fourier integral cosine transform to the thermal contact conditions (1.8) and using 
relations (2.1), (2.2), and (2.16), we obtain a system of Volterra integral equations of the second kind for the 
Fourier transformants of the functions f j (z ,  r): 

2 
E A,~A(~,.,-) ,.,,...,.,r ~, .,~_,:t-,.,~ .... :,~(a,~,~) = l ~ )12..,~, -t) ~ " " ' U - - - a k q k ~ q , ~ ' ) ~  
k = l  t k = l  \ ~ k  / .A(ak, ~) 

(2.17) 

~ I - .% : , , ( ~ , ~ ) i - ~  ~-~. (-I) k-' 
o 

T" 

+ / : o. 
k=l 0 
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Solving this system of equation, we find the transformants of the contact pressure and the functions 
f j (z ,r) .  Together with the formulas for the transformants of the stress function ~ j ( r ,~ , r )  they give th(, 
complete analytical solution of the formulated problem in the transformants of the Fourier integral cosine 
transform. 

The original is given by the inversion formula [1] 
oo 

~2j (r, z, r) = 27r -1 J 9j(r ,  ~, r) cos(z~) d~, (2.18) 
0 

and the value of the integral is found numerically. 
3. C o n s t r u c t i o n  of N u m e r i c a l  Algor i thm.  System (2.17) is solved numerically. The behavior of 

the tribosystem is studied in the interval [0, r*], which is divided into N parts with constant step rl. Then. 
at each time rn = nrl (n = 1 , . . . ,  N), the integrals are replaced by finite sums according to the scheme 

r n  n - -1  

f f(y)F(T n --y)dy = Tl(O.af(o)s(Tn)+ Z f(")F( Tn -T,)),  
0 i = l  

where 
r l  

/ f (y)F(rl  - y) dy 0.brlf(O)F(rl). 
0 

These relations were written using the quadrature trapezoidal formula, and the mode of behavior of the 
functions ~/(r,~, r) and H/(~,r) :  by construction, [problem (2.3)] (~j(r,~,0) = 0, and the function/~j(~, r) 
has the same value for r = 0. The derivatives of the functions are replaced by finite differences according to 
the rule drT(rn) = 0.br~l(T(rn+l) - T(rn-1)). 

Then, the derivatives of integrals in system (2.17) are replaced by the relations 
T 

( O , . / f ( y ) F ( r - y ) d y )  =O,25f (o)[r(rn+x)-  f ( r , -1 ) ]  I,,= 
0 

n--2 
+0.5( f (r=)e(r l )  + f(r=-l)F(r2) + Y~ f(ri)[F(r,+x - ri) - F(r=_l - ril]) ( n = 3 , 4 , . . . 1 ,  

i = 1  

/1 = 0.25f(0)r(r2) + 0 .bf( r l )F(r l ) ,  12 = 0.25f(0)[F(rs) - F(rl)] + 0.5(f(rx)F(r2) + f(r2)F(rl)). 

It is easy to show that I0 = 0. 
Analysis of these relations shows that, at each time rn, the system of integral equations (2.17) reduces 

to a system of two linear algebraic equations for functions s~(~, r,z). The functions ~ are linear functions 
of the external load: ~'(~, rn) = Qjl(~,rn)41(~,r,~) + Cj2(~,Tn)q2(~,Tn). Similar relationships hold for the 
transformants of the temperature, contact pressure, and the stress function. 

Numerical analysis shows that the functions Qjk(~, rn) are not oscillating and decrease fairly rapidly 
as ~ increases. Therefore, in the inversion of the functions J~(~, rn), we can divide the interval of integration 
[0, co) into two parts, [0, ~*] and [~*, co), where (* is of the order of 1000, and ignore the integral over the 
second interval. To calculate the integral over the interval [0, ~*], we use Filon's method [5] (the method of 
approximate calculation of integrals of trigonometric functions); the behavior of the functions (~j should be 
taken into account. We explain this by an example. 

Let ql(z, r) = 0 and q2(z, r) ---- qo(r)H(L - z )g (L  + z), where H(z) is the Heaviside function [1], and 
L is a parameter that determines the interval of application of the external load. In this case, the Fourier 
transformant of the external load has the form q2(~, r) = q0(r) sin(L~)~ -1. After additional manipulations we 
obtain 

f j (z ,  r) = 27r-lq0(r) ] (~j2(~, r)~ -1 sin(L~) cos(z~) d~ 
0 
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where 

= 7 r - l q o ( r )  f[Q:(r ~) - Qj2(0, r)]~-l[sin(~(L + z)) + sin(~(L - z))] d~ 
0 

+Qj2(0, r f i r - 'q0(r ) [  Si(~*(L + z)) + Si(~*(L - z))], 

,$ 

= [ sin(z)x -1 d x  Si(z) 
0 

is the integral sine [2], and we can use directly Filon's formulas. 
Numerical studies show that  for a relative calculation error of 1%, it suffices to divide the interval 

[0, (*] into segments with a step of 5 m -1 and take 7"1 equal to 2 sec. 
4. Ana lys i s  o f  t h e  R e s u l t s .  Analysis of the previous results shows that with t ime the contact pressure 

(2.16) reaches a stationary value that  coincides with the analytical contact pressure of the stationary problem. 
An expression for the transformant of the contact pressure of the stationary problem can be found from 

relation (2.16) and system (2.17) by applying to them the Laplace integral transform and using the relation 

where r is the Laplace transform of the function r [I]. For example, provided that qj(z, r) = q](z)(1 - 
exp ( - /~r) )  and w = w* = const, we obtain the formula 

2 

where 

~(~)] -' fr , (4.1) 

H21(~)(,,~l -~ h~)ll(ao, ~)) - /~11(~)() i2  -4- h~)21(ao, ~)) 
'~(~) = ~2(~1 + hCH(a0,~)) + ~(A2 + h,~21(a0,~)) 

For ~ = 0 we have 

k - I  0 + a2 :s,(0) = (-1) k-xq;(~ J ~ ( - 1 )  - z - ( ~  
tk~l 2 "2 = Ek a 0 - akJ Lk= 1 r-,k \ a  0 -- a 2 

The structure of the denominator of expression (4.1) shows that, for each value ~ from the interval 
[0, or there is a critical value of the angular velocity w* for which the transformant of the contact pressure 
pst(~) becomes infinitely large. Therefore, one can calculate the contact pressure of the stationary problem 
only for values of w* smaller than rain w~r(~ ). For example, for a l  = a2 = 12.10 -6 K -1, we have minwc* r 
3.32 sec -1. An increase in the parameter  a t  decreases minw~r , and a decrease in c~1 increases minw~r. The 
other parameters in the numerical calculations were as follows: Ej = 2-105 MPa, v / =  0.3, A i = 50 W / ( m -  K), 
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&j = 1 k W / ( m  2- K), kj = 1.25-10 - s  m2/sec, h = 10 k W / ( m  2. K), f = 0.1, al = 3.5 cm, a2 = 6 cm, a0 = 5 cm, 
ct2 = 12 �9 10 -6 K -1, a l  = 1.2, 6, 12, and 15 �9 10 -6 K -1, w* = 1 and 2 sec -1. The external load was varied as 
q{(z) = 0, q~(z) = q*H(L  - z ) H ( n  + z), where q* = 20 MPa and L = 0, 1 m. 

The dependence of the contact pressure of the stationary problem on the linear thermal expansion 
coefficients is not chosen arbitrarily. The numerical s tudy has shown that an increase in the parameter al  
causes an increase in the contact pressure in the thermoelastic problem with respect to the contact pressure 
in the purely elastic problem. In this case, the increase in the heat-formation intensity due to increase in 
w* increases the contact pressure. A decrease in the linear thermal expansion coefficient a t  causes opposite 
effects. 

Figure 2 shows the variation in the contact pressure along the cylinder axis versus the parameter al  
in the stationary problem. Curves 1-4 correspond to a l  = 15, 12, 6, and 1.2- 10 -6 K -1 (a2 = 12 �9 l0 -6 K -1 
and w* = 1 sec-1), and the dashed curve shows the contact pressure of the elastic problem. The existence of a 
separation zone for this loading pattern is explained by the discontinuous character of the external load. Note 
that an increase in a t  causes expansion of the inner cylinder, so that no separation is observed even under a 
discontinuous external load. 

Figure 3 shows the distribution of the steady contact temperature along the axis of the two-layer 
cylinder. The curve numbers correspond to the values of a l  in Fig. 2 (the upper curve refers to the first body, 
and the lower curve to the second body). The temperature jump on the surface r = a0 is caused by imperfect 
thermal contact. 

In the calculations of the contact pressure of the nonstationary problem, two patterns of variation of 
the external load and the angular velocity were chosen: 

(1) q l ( z , r )  = 0, q2(z, v) = q~(z)(1 - e x p  ( - ~ v ) ) ,  and w(7") = w*; 
(2) qt(z,  r)  = 0, q2(z, r) = q~(z), and w(r)  = w*(1 - exp ( - ~ r ) ) ;  

where ~ = 0.01 sec -1. Numerical studies show that the time during which the tr ibosystem reaches a stationary 
value is about 900 sec in both cases. 
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Figures 4 and 5 show graphs of variation in the contact pressure p along the axis of the two-layer 
tribosystem for some times (Fig. 4 corresponds to the first pattern of variation in the external load and 
angular velocity, and Fig. 5 to the second). Curves 1-3 in Figs. 4 and 5 correspond to r = 200, 400, and 
900 sec (al = 15- 10 -6 K - l ,  0~2 = 12- 10 -6 K -I ,  and w* = 1 sec-l).  The dashed curve in Fig. 5 refers to the 
contact pressure for r = 0. The contact pressure reaches monotonically a stationary value, provided that the 
angular velocity w(r) varies in the interval [0,w0] (w0 < min W'r). 

Figure 6 shows the distribution of the contact temperature for the same times as in Figs. 4 and 5. 
The temperature of the cylinders for the above values of the external load and angular velocity reaches 
monotonically a stationary value. In this case, there is an insignificant difference in the character of the 
distribution and the temperature values obtained for the above dependences. 

R E F E R E N C E S  

. 

2. 

3. 

4. 

5. 

A. S. Galitsyn and A. N. Zhoukovskii, Integral Transforms and Special Functions in Heat-Conduction 
Problems [in Russian], Naukova Dumka, Kiev (1976). 
M. Abramovits and I. Stigan (eds.), Handbook of Special Functions [in Russian], Nauka, Moscow 
(1979). 
V. A. Shachnev, "On the axisymmetric problem of thermoelasticity," lzv. Akad. Nauk SSSR, Otd. 
Tekh. Nauk, Set. Mekh. Mashinostr., No. 5, 75-79 (1962). 
V. A. Shachnev, "A variational solution of the axisymmetric problem of thermoelasticity," Prikl. Mat. 
Mekh., 26, No. 6, 1033-1042 (1962). 
K. J. Tranter, Integral Transforms in Mathematical Physics [Russian translation], Gostekhteoretizdat. 
Moscow (1956). 

436 


